注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘要:抽油机故障诊断对于保障油气田的稳定运行至关重要。针对已有基于深度学习的故障诊断模型参数量大导致应用范围受限的问题,提出一种基于空洞卷积和惩罚机制的卷积神经网络模型。该模型在浅层神经网络部署不同空洞卷积率的空洞残差模块,高效获取示功图轮廓特征的同时降低了模型参数量。其次,将惩罚机制融入Softmax损失函数,增强模型诊断气体影响等难分样本的故障准确率。(剩余14508字)
登录龙源期刊网
购买文章
基于卷积神经网络的抽油机故障诊断
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00