加权全变分正则化与ADMM 求解的无监督地震数据随机噪声压制方法

打开文本图片集
摘要: 噪声压制是地震数据处理中的一个至关重要的环节。近年来,随着深度学习的蓬勃发展,其在地震数据中的应用取得显著成效。在实际应用中,收集大量带标签的地震数据(无噪数据)是困难的,为此,基于无监督的深度图像先验(DIP)框架压制二维地震数据随机噪声。首先,探索跳跃连接对网络去噪性能的影响,确定网络架构;其次,在损失函数中加入加权全变分(WTV)正则项,与传统的全变分(TV)正则项所不同的是,WTV 正则项的权重系数不再是固定不变的超参数,而是与数据空间结构有关的可学习参数;最后,通过交替方向乘子法(ADMM)求解该优化问题。(剩余222字)