基于门控循环神经网络的电池健康状态估算

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:动力电池;电池健康状态;Adam算法;门控循环神经网络 中图分类号:U469.72 文献标志码:A DOI:10.19822/j.cnki.1671-6329.20250009

【Abstract】A batery Stateof Health (SOH) estimation method based on Gated Recurrent Unit (GRU) neural network isproposedtoaddresstheissueoflowaccuracy inestimatingtheSOHofnewenergyvehicle powerbateries.This method extracts multidimensionalinputfeaturesbasedonbatterychargingdata,performsdata cleaningandnormalizationonthe features,and trainsaGRU network toconstructabatery SOHestimation model.Theresults indicate thattheproposed method can achieve an average absolute error of 0.26% inestimatingbattery SOH,whichis1.O4% lowerthan traditional calculationmethods.This methodcanachieveamoreaccurateestimationof batery SOHandcanbeused forevaluating the aging status of electric vehicles.

Key words:Power battery,State of Health (SOH),,Adam algorithm,Gated Recurrent Unit (GRU)

0引言

随着新能源汽车市场占有量的迅速提升,车辆使用过程中的电池性能及老化程度成为用户关注的焦点。(剩余8029字)

monitor