基于卷积神经网络的建筑物震害特征提取与识别研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:

提出一种基于卷积神经网络(CNN)的建筑物震害特征提取与识别方法,以解决传统震害评估方式的空间局限性和低效性问题。通过对震后建筑物进行边框回归、掩膜生成和特征分类,实现震害特征的有效提取和识别。首先,通过收集云南省2014年鲁甸6.5级、景谷6.6级和2021年漾濞6.4级地震的建筑物震后无人机影像数据,并利用数据增强方法扩充样本,构建一套典型的云南历史地震建筑物震害数据集;其次,利用这一震害数据集对CNN进行训练和优化,从而得到能够提取建筑物震害特征并进行识别的模型;最后,通过实际震例对模型进行验证。(剩余17898字)

monitor
客服机器人