基于AlexNet模型的大闸蟹自动分级系统设计与实现

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:针对目前大闸蟹人工分级方法的局限性,设计基于Matlab图像处理的大闸蟹分级系统。首先,在湖州市太湖养殖基地采集不同等级大闸蟹背部和腹部图像,对采集的图像进行灰度化、阈值分割、形态学等预处理。然后利用卷积神经网络AlexNet模型提取大闸蟹公母特征,利用面积法计算其大小。通过选取的10只大闸蟹的重量和系统计算得到的像素转化为面积参数,分析得到大闸蟹背部图像像素占比与其重量成近似正比例关系,因此可根据背部图像的计算值得到其大小特征。(剩余6439字)

目录
monitor
客服机器人