基于可形变卷积与SimAM注意力的密集柑橘检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。(剩余10856字)

目录
monitor