基于煤矿井下不安全行为知识图谱构建方法

打开文本图片集
摘要:虽然知识图谱已广泛应用于各个领域,但在煤矿安全方面,尤其在煤矿井下不安全行为方面的研究较少。构建了一种自底向上的煤矿井下不安全行为知识图谱。首先,采用传统机器学习和深度学习算法相结合的方法进行命名实体识别,采用RoBERTa进行词语向量化,采用双向长短时记忆网络(BiLSTM)对向量进行标注,提高网络模型对上下文特征的捕捉能力,通过多层感知机(MLP)解决煤矿井下不安全行为数据集数据量不足的问题,采用条件随机场(CRF)模型解决前面存在的单词关系不识别问题,并捕获全文信息和预测结果。(剩余15135字)