基于大数据的网络隐患分析系统研究与应用

打开文本图片集
摘要:文章提出了一种基于大数据技术的应用方式,通过挖掘告警强关联规则深入挖掘网络故障隐患,提升故障及隐患处理效率;通过构建季节性时间序列分析模型揭示历史数据中故障隐患发生、发展的规律,对故障隐患进行有效预警,将故障隐患从被动处理的传统模式革新到主动处理的预控层面上。
关键词:大数据分析;告警关联规则;故障预测
Research and Application of Network Hazard Analysis System Based on Big Data
ZHANG Rui, HUANG Jianbo, WANG Ruyue, ZHU Kunyuan, ZHAN Pengfei
(China Mobile Communications Corporation, Guangzhou 510000, China)
Abstract: The article proposes an application method based on big data technology, which deeply mines network fault hidden dangers by mining strong alarm association rules, and improves the efficiency of fault and hidden danger processing; By constructing a seasonal time series analysis model to reveal the occurrence and development patterns of fault hazards in historical data, effective early warning of faults and hazards can be provided, and fault hazards can be innovated from the traditional passive processing mode to the proactive pre control level.
Key words: big data analysis; alarm association rules; fault prediction
现阶段网络隐患主要通过人为方式对网络告警及性能进行定性分析,无法有效挖掘出海量告警中的隐藏价值,不能实现多业务复杂网络中的故障及隐患的快速处理[1]。(剩余3551字)