Slim-YOLOv8n:基于改进YOLOv8n的轻量级棉铃检测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:[Objective]Cottonyield predictionisanimportantpartofcotonproductionmanagement inourcountry.The accuracyofbolldetectionduringthebollopeningstagedirectlyafects theprecisionofyieldestimation.Inordertosolvethe problemthat thecomputationalcomplexityofexistingcottonbolldetectionmodels increasessignificantlyduetothepursuitof detectionaccuracythisstudyproposesalightweightcotonbolldetectionmodel,Slim-YOLOv8n,basedonimproved YOLOv8n.Methods]ThismodeltakesYOLOv8nasitsmainframework.Ononehand,itintegratesalightweghtcros-scale featurefusionnetworkintheneckstructuretoefectivelyreducethedimensionalityofmulti-scalefeaturefusionandlower computationalcomplexityOntheotherhand,itreconstructsthedetectionheadthroughreparameterizedconvolutionandthe ideaofsharing,designingareparameterizedheadandatwo-stage featureprocesingstream tomaintainaccuracy while achieving modellightweighting.[Results]Experimentalresults showthatthismodelachievesadetectionaccuracyofupto 98.20% .Compared with the YOLOv8nmodel,it reduces the number of parameters by 44.84% ,computational cost by 39.51% , and model size by 43.34% ,verifying the superiority of the model improvement.[Conclusion] Slim-YOLOv8n fully meets the dualdemandsofhighaccuracyandlightweightingforbolldetectiontasks,providingstrong technicalsupportfortheeicient and precise detection ofbolls at the boll-opening stage in cotton yield prediction.

Keywords: cotton boll detection; YOLOv8n; deep learning

棉花作为全球纺织工业的重要原料,其产量预测是农业生产管理中的重要环节[]。(剩余16251字)

monitor
客服机器人