基于改进YOLOv8n的茶树嫩芽识别

打开文本图片集
摘要:在复杂自然环境下对茶树嫩芽进行精确识别是实现农业机器人智能化采摘茶树嫩芽的关键技术之一。针对茶园复杂环境下茶树嫩芽识别率低的问题,提出了一种基于改进YOLOv8n的茶树嫩芽检测方法。使用荣耀80手机采集茶树嫩芽图片,并对图片进行标注,按照训练集、验证集、测试集8∶1∶1的比例划分数据集。为有效提取嫩芽特征并减少模型冗余计算和内存访问,采用FasterNet模型替换YOLOv8n网络结构的骨干网络进行特征提取;为抑制茶园环境背景信息、增强模型对嫩芽的特征提取能力,在主干网络尾部(SPPF模块后)引入全局注意力机制(Global attention mechanism,GAM);在Neck网络中引入上下文引导(Context guided,CG)模块,学习茶树嫩芽局部特征和周围环境的联合特征,进一步提高茶树嫩芽的识别准确率。(剩余15975字)