基于对抗学习的查新检索式自动生成

打开文本图片集
摘要: 科技查新是科研人员获取前沿信息的重要途径,但伴随着信息量的剧增,传统查新检索式的构建方法存在效率低、关键词提取不全面、一词多义等问题,因此提出了融合基于Transformer的双向编码器表达与SequenceGAN的查新检索式自动构建模型BSGAN。通过BiLSTM-CRF构建领域词表及概念同义词词表,解决了查新检索式构建过程中关键词不够全面的问题;采用基于Transformer的双向编码器表达模型中多头注意力机制,解决了检索式中一词多义问题;使用BSGAN检索式自动构建模型,实现了查新检索式的自动生成与逻辑构建,解决了传统方法中专家手工构建检索式效率低的问题。(剩余11684字)