基于ASTLSTM的地铁乘客流量短时预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 地铁乘客流量预测是智能交通系统的重要环节,当前大多数预测模型较少对地铁乘客流量进行时空相关性建模,且未考虑空气质量等天气因素带来的影响,存在地铁乘客流量预测准确度不高的问题。针对以上问题,提出基于注意力机制的时空长短期记忆(ASTLSTM)网络的地铁乘客流量短时预测模型。首先,对数据进行预处理;然后,利用注意力机制与图卷积网络(GCN)、卷积神经网络(CNN)相融合,挖掘地铁数据中的时空相关性,并通过长短期记忆网络(LSTM)来提取空气质量数据中的外部特征;最后,通过特征融合得到地铁乘客流量预测结果。(剩余11223字)

monitor