基于机器学习算法的债券流动性预测

  • 打印
  • 收藏
收藏成功

摘要:对投资者而言,标的资产的流动性变化对制定投资策略、防控风险具有重要意义。本文主要关注债券在未来一段时间的流动性,创新性地融合先验知识,使用债券的动静态特征信息,训练出可解释的概率分层决策链模型,实现对流动性的预测。此外,本文提出基于投资组合的未来流动性分数指标,实现在不同投资组合之间的流动性排序,并可以观测在连续时间窗口下的未来流动性的变化。(剩余4815字)

monitor