基于K-means-CNN耦合的采砂大数据智能清洗模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:针对水下采砂大数据中存在信息缺失、冗余、混乱等问题,构建一种K-means聚类与CNN(卷积神经网络)的耦合模型。首先应用最小二乘法得到K-means的聚类阈值,使同类型数据更易于聚类;对数据集进行CNN网络训练,根据各种不同的样本进行网络参数选择,同时实现了CNN智能融合处理;再把从现场收集的大数据输入经过K-means-CNN智能耦合的模式中,将水下采砂大数据分为缺失、冗余、混乱、正常四种类型,并进行标记和数据清洗。(剩余7289字)

目录
monitor
客服机器人