基于双网络的钢材表面缺陷检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:针对传统算法检测钢材表面缺陷(如开裂、斑块、划痕等)精准度较低的问题,提出一种基于分割与分类的两段式深度学习网络。该网络是专为表面缺陷的检测、分割以及分类而设计的。第一阶段利用YOLOv5算法对钢材表面的缺陷进行定位、分割;第二阶段使用EfficientNet网络对钢材表面的六种缺陷类型进行分类。(剩余6185字)

目录
monitor