全球人工智能评价指标体系结构解构与评价范式研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18 文献标识码:A DOI:10.11968/tsyqb.1003-6938.2025042

Abstract The global artificial intelligence (AI) evaluation system faces chalenges of "measurement black boxes"and "strategic misjudgments."Tosystematicallydeconstructitsinteralstructure,thisstudyintegrates 22 mainstreamIevaluationindexes (637original indicators),constructsastandardized libraryof3O7comparable indicators,andusesadualdimensionalanalysis (atention distributionandcomplex networkmodeling)toreveal its internaloperationallogic.The study,forthefirsttime,identifiesandnamesthedominant"nationalcapacityased,scaleorientedgrowth"evaluation paradigminthe field.This paradigmtakesnationalcapacityasits evaluationcore,is drivenbya"policy-technology"dual engine,exhibitsasignificant scale-oriented bias initsmeasurement standards,andconsequentlyhasstructural blind spots in dimensionssuchas innovation qualityand conversion efficiency.Byproviding astructural blueprintofthis paradigm,this study offers acritical empirical pathway foravoiding strategic misjudgments and designing more balanced next-generationevaluation frameworks.

Key words artificial inteligence evaluation; evaluation indicator system; complex network analysis; evaluation paradigm; structural deconstruction

在全球新一轮科技革命与产业变革的浪潮中,人工智能(AI)已成为大国战略博弈的核心领域。(剩余12603字)

monitor
客服机器人