移动智能推荐情境下网络成瘾行为扎根研究

打开文本图片集
Grounded Study of Internet Addiction Behavior in the Context of Mobile Intelligent Recommendation
AbstractAI-driven recommendation algorithms have been widely deployedacross mobilesocial media platforms, enablingpersonalized informationdeliverythrough learning fromusers'historical behaviorsand interestpreferences. Theresultingmobile inteligentrecommendationecosystemunderscoresthedisruptiveapplicationsofAIintherecommendation domain.While mobile inteligentrecommendationsbettersatisfyusers'information needs,theyalso exacerbateaddictiveonlinebehaviors.This study employs grounded theory to explore theunderlying mechanisms influencing userinternetaddictionwithinmobileinteligentrecommendationcontexts.First,aninterviewprotocolwasdesigned,nd data werecollected through semi-structured interviews.Three-tiercoding Was thenconducted: during open coding,l32 initialconceptsand33basiccategories wereextracted;throughaxialcoding,lOprincipalcategories wereidentified;and duringselectivecoding,atheoreticalmodelofinternetaddictionmechanismsinmobileinteligentrecommendationscenarios wasconstructed.Tefindingsrevealthatpersonaliteracyehavioralbeliefs,exteralifluences,egativemotions, andreal-worldconditions exertdirectimpactsoninternetaddictionbehaviors.Meanwhile,theinformationqualitysystem quality,andservicequalityofintellgentrecommendations indirectlyinfluencebehavioralbeliefs throughmediatingeffectsof usersatisfaction,therebyaectingaddictivebehaviors.Thisresearch,toacertainextent,elucidates thesocietal impactsofAI'sdisruptiveapplicationsinrecommendationsystems,providing theoreticalreferencesforinterventionsand governance strategies addressing user internet addiction within mobile intelligent recommendation environments.
/wordsmobilesocialmedia;inteligent recommendation;disruptive application;internetaddiction; grounded th
随着人工智能(ArtificialIntelligence,AI)技术的快速发展和移动社交媒体的广泛使用,算法驱动的智能推荐系统已深度嵌入移动社交媒体平台,对人们获取信息的方式产生了颠覆性影响[1]。(剩余11704字)