基于支持向量聚类和模糊粗糙集的交通流数据修复方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为解决受天气影响、探测器故障和人为错误等多种原因造成的交通流数据丢失问题,提出一种基于模糊粗糙集理论的交通流数据补缺方法,将支持向量聚类与模糊粗糙集结合进行交通流数据的分类,并结合模糊神经网络和遗传算法进行数据补齐。该方法对支持向量聚类参数,聚类大小和加权因子进行优化,并估计缺失值。研究结果表明所提出的混合方法具有足够且合理的数据修复性能,与模糊神经网络等估算模型的结果对比表明,该模型的数据修复效果优于其他对比模型。(剩余16011字)

monitor