基于TCN-自适应的地下洞室围岩变形异常数据识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:水电站地下洞室围岩变形数据具有变化不确定、序列样本短等特点,传统的异常识别方法漏识率、误判率较高。随着智能技术的发展,通过神经网络建立更加可靠的异常识别方法是目前研究的热点,而传统的神经网络存在时序关联性不强和计算模型庞杂等问题。为此,提出了基于时域卷积神经网络(TCN)及标准自适应的地下洞室异常数据识别算法,该算法利用TCN技术,考虑序列的前后关系,建立了更为可靠的序列模型;同时针对地下洞室监测数据特征,通过考虑误差中位数、数据波动和仪器精度3个方面,突现自适应匹配最优识别准则。(剩余10503字)

目录
monitor