流形学习在红松籽仁蛋白质含量近红外检测中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 为研究检测红松籽仁蛋白质含量的近红外光谱分析技术,在用变量标准化校正+一阶导数+小波变换对原始光谱进行预处理的基础上,分别运用主成分分析、改进型局部线性嵌入、局部切空间对齐、黑塞特征映射进行光谱数据的降维处理,分别构建偏最小二乘、岭回归、支持向量回归、极度梯度提升数学模型。结果表明,改进型局部线性嵌入+支持向量回归法建立的参数优化模型质量最佳。(剩余12101字)

目录
monitor