基于机器学习预测的隧道监测缺失数据插补研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:【目的】通过修复隧道监测数据的缺失值,为后续对隧道健康状态的分析提供更接近于现实的完整数据。【方法】本研究提出基于回归和分类思想的机器学习插补法,通过建立特征与缺失数据之间的关联规则,根据缺失个数和置换特征的重要度来设计插补顺序,并对缺失数据进行迭代插补。【结果】根据不同的缺失率、缺失类型和特征重要度对UCI数据和实际隧道监测数据进行实例分析,对比统计方法和机器学习方法的特点。(剩余9284字)

目录
monitor