赋s范数Orlicz函数空间的光滑点

打开文本图片集
摘 要:光滑点是巴拿赫空间几何理论中的重要概念,在估计理论,概率论等领域有重要应用。本文中,首先用凸模引入赋s-范数Orlicz空间对偶空间范数,然后讨论对偶范数的范数可达性,在此基础上给出赋s-范数Orlicz空间的支撑泛函的显式形式,最后给出赋s-范数Orlicz空间光滑点的判据。
关键词:Olicz 函数空间;s-范数;支撑泛函;光滑点
DOI:10.15938/j.jhust.2024.02.018
中图分类号: O177.3
文献标志码: A
文章编号: 1007-2683(2024)02-0147-06
Smooth Points of Orlicz Function Spaces Equipped with S-norm
XU Hao, WANG Junming
(School of Science, Harbin University of Science and Technology, Harbin 150080,China)
Abstract:Smooth points are important concepts in Banach space geometry theory, which have important applications in estimation theory, probability theory and other fields. In this paper, firstly the dual norm of Orlicz space endowed with s-norm is introduced by convex model and then the norm attainability of dual norm is discussed. On this basis, the explicit form of support functional for Orlicz space endowed with s-norm is given. Finally, a criterion for smooth points in Orlicz space endowed with s-norm is presented.
Keywords:Orlicz function space; s-norm; support functional; smooth points
收稿日期: 2022-11-26
基金项目: 国家自然科学基金(11871181).
作者简介:
徐 浩(1993—),男,硕士研究生.
通信作者:
王俊明(1970—),男,博士,教授,E-mail:wjmszx@163.com.
0 引 言
自1936年Clarkson引入了一致凸空间,数学工作者们已给出了很多凸性概念,并且充分讨论了相应的性质[1]。(剩余9918字)