用于颈部超声图像的SED-UNet分割方法研究

打开文本图片集
摘 要:超声图像作为目前常用的医疗诊断手段之一,人工判读超声图像很大程度上依赖于医生主观经验知识,耗时耗力,难以满足快速、批量的临床诊断需求,因此提出了一种基于深度学习和可变形卷积U-Net的图像分割模型SED-UNet。用可变形卷积结合BN和Dropout层对原网络的卷积运算进行优化改进,提升网络收敛性、增加网络模型的鲁棒性、提升模型的训练效率, 用SENet模块在解码阶段的跳跃连接处进行优化改进,提升分割准确率,进而构建适用于颈部超声图像分割的卷积神经网络模型。(剩余16260字)