基于深度学习的二维翼型流场重构技术研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:基于深度学习方法的二维翼型流场重构能够克服传统风洞试验和计算流体力学模拟的缺点,在提高计算速度的同时保证计算精度。提出的深度学习方法通过模拟RANS方程对速度、压力和密度分布进行预测,最优模型可以达到平均压力、速度、密度误差为5%。该方法的单个算例计算时间约为1s,计算耗时约为常规求解器的0.66%。(剩余9829字)

monitor