动态环境下基于深度学习的视觉SLAM研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:由于传统的同步定位与建图(simultaneous localization and mapping,SLAM)中有很强的静态刚性假设,故系统定位精度和鲁棒性容易受到环境中动态对象的干扰。针对这种现象,提出一种在室内动态环境下基于深度学习的视觉SLAM算法。基于ORB-SLAM2进行改进,在SLAM前端加入多视角几何,并与YOLOv5s目标检测算法进行融合,最后对处理后的静态特征点进行帧间匹配。(剩余11063字)

monitor