基于深度学习的可食用野菜种类识别

打开文本图片集
摘 要:可食用野菜兼具营养价值和药用价值,然而传统采摘可食用野菜的分辨主要依赖人为主观经验,效率低且错误风险高,因此对可食用野菜快速准确的识别对实现野菜产业开发和保障食用安全具有重要意义。以南京地区“七头一脑”共8种可食用野菜为研究对象,构建了8种野菜的2400张图像数据集,采用3种具有代表性的卷积神经网络(convolutional neural network,CNN)模型(AlexNet、VGG16和ResNet50)和3种视觉自注意力(vision transformer,ViT)模型(ViT、CaiT和DeiT)共6种不同的深度学习模型进行训练和验证,并通过梯度加权类激活映射(gradient-weighted class activation mapping,Grad-CAM)来分析深度学习模型的决策机制。(剩余16276字)