基于组稀疏优化的强化学习稀疏表征

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:强化学习由于具有出色的数据效率和快速学习的能力,开始应用于许多实际问题以学习复杂策略。但是高维环境中的强化学习常常受限于维度灾难或者灾难性干扰,性能表现不佳甚至导致学习失败。围绕表征学习,提出了一种符合Lasso 类型优化的稀疏卷积深度强化学习方法。首先,对稀疏表征的理论和优势进行综述,将稀疏卷积方法引入深度强化学习中,提出了一种新的稀疏表征方法;其次,对由稀疏卷积编码定义的可微优化层进行了数学推导并给出了优化算法,为了验证新的稀疏表征方法的有效性,将其应用于相关文献常见的基准环境中进行测试。(剩余8514字)

monitor