基于物理信息深度学习算法的Flame D 热流场重构研究

打开文本图片集
摘要:尽管数值模拟方法在求解流体动力学的湍流过程中发展迅速,但处理复杂的几何形状和流动过程时,在准确建模和计算速度等问题上仍面临挑战性。针对当前在计算流体力学(Computational Fluid Dynamics,CFD)上存在的计算代价大等问题,本文在传统的湍流数值模拟技术的基础上,结合机器学习,以经典的Sandia Flame D 燃烧模型为例,通过引入物理信息的深度学习算法, 建立物理信息神经网络架构(Physical-Information Neural Network,PINN),将符合规律的物理信息内嵌到神经网络,使得用小样本就能实现参数的流场重构。(剩余12206字)