基于FCMFS特征选择算法的煤层气压裂效果预测

打开文本图片集
CoalbedMethaneFracturingEffectPredictionBased on FCMFS Feature Selection Algorithm
MIN Chao1,2,3*, GUO Xing1,2,HUA Qing4, ZHANG Na4 , ZHANG Xinhui1, 2
1.School of Science,Southwest Petroleum University,Chengdu, Sichuan 61o5oo,China 2.Institute forArtificial Intelligence,Southwest Petroleum University,Chengdu,Sichuan 61o5oo,China 3.StateKeybatoOdeoloEploatiousttroleesitygdu 4.ChongqingGas Mine,SouthwestOiland GasfieldCompany,PetroChina,Jiangbei,Chongqing 40o7oo,China
Abstract:Itisdificulttoanalyzethenonlinearrelationshipbetweenthefracturingeffectandcharacteristicsofcoalbedmethane fromthe mechanism level.Aimingat theproblem,the internalrelationship between thecharacteristicsofcoalbed methane fracturing effectisstudied,andaprediction methodofcoalbedmethane fracturingefectbasedonFCMFSfeatureselection algorithm is proposed.The methodusesfuzzycomprehensive evaluation tocalibrate thelabel,anduses genetic programming andXGBoostalgorithmtoconstructandscreenthecharacteristicsofinfluencingfactors,including twonewstructuralfeatures (stressratioandenticfactorsofgeologicalconstruction)ndsixharacterstcsofperforatiosectiontickne,peability fracturepressure,coalstructure,gassaturationandsandstrength.Theexperimentalresultsshowthatbasedontheeightfeatures constructedandscreenedbytheFCMFSfeatureselectionalgorithm,combinedwithavarietyofmachinelearningalgorithms to predictthefectofoalbedmethanefracturing,theacuracyrcallateandFlassificationevaluationindicatorsareiproed by about 5%~10% .Among them,the Deep Forest algorithm has the best prediction clasification effect on the training set and the test set,and the three classification evaluation indicators are all above 95% and 80%
Keywords:coalbed methane;fracturing performance; main controlling factor;gene programming; DeepForest model 网络出版地址:http://link.cnki.net/urlid/51.1718.TE.20240927.1400.016
引言
煤层气作为一种储量丰富的非常规天然气资源,在中国能源结构的优化调整中发挥着重要作用[1-2]。(剩余12965字)