基于街景图像和深度学习的城市道路植物景观视觉质量评价

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S759.92 文献标志码:A 文章编号:1673-923X(2025)07-0205-12

Evaluation of urban roadway plant landscape visual quality using street view images and deep learning

CHENYiduo,HUHaihui

(ColegeofHorticlturedLdscapetecture,oreastgulturalUesityabino,Heiog,ia)

Abstract:【Objectie】Inurbanroadnetworksplantlandscapesalongroadsidesareotolyetiallementsofurbanbeauifcationbut alsodirectlyimpactresidentsqualityoflifeandurbaecologicalbalanceUnderstandingthedistrbutionoftevisualqualityofurbnoad plantlandscapesand their influencing factors canprovidetheoreticalsupportfor future urbanroad plant landscape planningand design. 【Method】Taking Harbin asacasestudy,weutilized stret viewimagedata andcombinedthe SegNeXtsemanticsegmentation model withtheSENetdeepleaingmodeltoquantifyindicatorssuchasthegreeviewindex.Acomprehensiveevaluationofplantadscape visual qualitywasconductedusingtheTrueSkillscoringsystemandtherandomforestalgorithm.【Result】1)Scores forplantandscape evaluationiatoossballibcttlotoeer districtscoredlower2)ereasasignificantpositivecoelationetweentheGVandboththeCIandPLDsugestingutal enhancement;howee,angativeoelationasevedbeweenstructuralLRandtheGVI,andbetweenndD.3)In the visual quality evaluation model based onrandom forest,PLMC had over 50% feature importance,indicating that PLMC is theprimary factorinpredictigalalt4vallalalitabn'stdastedteelih concentrationineothwestegion,iletherarasispladaixeddistrbutioofghndlosoes.【Cocsion】oosd visualqualityvaluationmetodprovidesateoreicalbasisfortesieificplainganddesignofurbanplatandscaps,withpotetial for broader application to other cities, promoting sustainable urban landscape development.

Keywords:semantic segmentation;random forest;roadwayplantlandscape;street view images;visualquality

城市道路是城市中供车辆、行人和其他交通方式通行的线性交通通道,是构成城市交通网络的重要组成部分。(剩余16875字)

试读结束

monitor