基于深度学习的大地电磁二维反演研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 为了解决传统卷积神经网络反演由于层数过多而影响准确度的问题,开展了基于残差神经网络的大地电磁二维反演研究。通过大地电磁二维正演建立大量数据集,以TE 和TM 模式下的视电阻率和相位数据作为四通道网络输入,以对应的地电模型作为标签及输出进行有监督的学习,利用残差神经网络实现二维大地电磁反演。不同噪声水平的地电模型反演结果表明残差网络不仅可以很好地消除层数过多带来的准确度下降问题,还具有很强的抗噪作用。(剩余198字)

monitor