利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测

打开文本图片集
摘要:为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩蔽等预处理后作为训练样本输入SA-CNN模型中。采用SA-CNN模型对磨削后的螺杆转子表面粗糙度值进行预测,并与经典网络ResNet、AlexNet、VGG-16、基础CNN以及图神经网络GNN预测结果进行对比。(剩余15941字)