样本不均衡情况下的航空发动机轴承故障诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:航空发动机滚动轴承工作在高温、高压、高转速的恶劣环境下,故障率高,因此对于其故障的准确识别和判断尤为重要。但由于轴承故障的偶发性,各类故障样本不均衡的问题非常突出,大大影响了基于数据的模式识别方法的准确性。本文提出了一种样本不均衡条件下的航空发动机滚动轴承智能诊断方法,采用合成少数类过采样方法进行样本平衡,在完成时频域特征提取和特征选择之后,利用改进蜂群算法优化后的随机森林策略实现轴承故障分类,并在凯斯西储大学轴承数据集和实验室构建的模拟航空发动机滚动轴承数据集上进行了实验验证。(剩余10504字)

monitor