注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要 以往利用卷积神经网络(CNN)搭建入侵检测模型时,需用人工经验设定网络结构,导致其网络性能很难发挥最优。为此,提出利用哈里斯鹰算法(HHO)对CNN的网络结构进行自适应优化,构建入侵检测模型。首先针对传统CNN全连接层易发生过拟合的问题,采用全局池化层(GAP)对参数进行缩减;然后采用哈里斯鹰算法选取CNN最佳网络结构,避免人工干预引起的检测不确定性,从而缩短参数选择时间,提升入侵检测模型的适用性和入侵检测性能。(剩余6054字)
登录龙源期刊网
购买文章
利用哈里斯鹰算法优化卷积神经网络的入侵检测研究
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00