结合联邦学习和增强学习的车联网数据差分隐私保护

  • 打印
  • 收藏
收藏成功


打开文本图片集

【摘要】为保证车联网环境下用户数据的安全性和隐私性,提出了结合联邦学习和增强学习的分布式数据差分隐私保护方案。利用联邦学习架构将数据保留在车辆节点或边缘设备上进行学习,通过分布式存储实现数据隐私保护,并减少数据传输开销;基于拉普拉斯机制实现差分隐私,并通过逐层相关传播(LRP)技术管理数据扰动,确保模型参数传递的隐私性和高效率。(剩余15667字)

试读结束

monitor