油藏流线模拟与表征方法研究进展

打开文本图片集
中图分类号:TE319 文献标志码:A 文章编号:1000-7393(2025)-02-0131-13
Abstract:Aswaterfloodedmatureoilfieldsenterthestageofdeepandrefieddevelopment,thecomplexdynamicsofsubsurface oil-waterdistributionimposehigherdemandsonreservoirmanagement.Thispapersystematicallyreviews theresearchprogressof streamlinesimulationtechnologyforreservoirdevelopment,outliningitsdevelopmental trajectoryfromtwo-dimensionaltracing algorithmtotree-dimensionalmultiphasefowmodels,andfurthertotheintelligentstage.Thealgorithmicprincipleofenancing computationaleficiencythroughdimensionalityreduction(decomposingthree-dimensionalflowfieldsintoone-dimensional streamlines)iselucidated.Thestreamlinetechnologyiscategorizedintotwocomponents:streamlinesimulationandstreamline characterizationTheformerrevealsfluidflowpattmsinporous mediabysolvingpressreandsaturationfields,whilethelater accomplishesvisual modelingofflowtrajectoriesthroughvelocityfieldreconstruction,streamlinepathtracing,andmultipysical parameter transfer.The studycomprehensivelysummarizes aplications ofstreamline simulationin aiding history matchingand modeloptimization,reservoirmodelupscalingandcomputationalaceleration,characterizationofcomplexdisplacement mechanisms,svranagementandotimtion,waterinjectioadwellattoization,aswellasdyamicalyisnd uncertaintyquantification.However,curentstreaminesimulationtchologyfaceschallengesinmulti-physicalfieldcoupling modeling,acros-scale computational eficiency,and data dependency.Breakthroughsin machine learning,adaptivemesh optimization,and high-performancecomputing integration are urgently needed to support sustainable energy development
Key words:streamline simulation; streamline tracing; reservoir development; multiphysics field coupling; machine learning
0 引言
随着全球众多油田开发逐渐步入中后期阶段,常规水驱油田普遍面临含水率上升、剩余油分布高度复杂化等挑战,油藏管理的精细化与实时决策需求日益迫切。(剩余29180字)