基于YOLOv8改进的下水管道障碍物识别算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 为提升下水管道障碍物清理效率和管道障碍物识别准确率,提出一种基于YOLOv8改进的管道障碍物识别算法。通过优化YOLOv8目标检测模型,使其更适用于环境复杂的管道内部障碍物检测任务。在YOLOv8网络结构的基础上引入PGI模块,增加辅助可逆支路和多级辅助模块缓解信息瓶颈问题,减少精度损失;引入SCConv模块来替换C2f模块,在实现模型轻量化的情况下保持检测精度;引入Focal-Modulation模块改进了传统的SPPF模块,使模型的精度得到一定程度的提升。(剩余10839字)

monitor