基于Logistic模型与CART决策树模型构建新生儿低血糖风险预测效能的比较

  • 打印
  • 收藏
收藏成功


打开文本图片集

Comparison of the predictive efficacy of neonatal hypoglycemia risk based on the Logistic model and the CART decision tree model

SuzhouHospitalAffiliatedtoNanjingMedicalUniversity,Jiangsu2151ooChina *Corresponding Author CHEN Qingqing,E-mail:276061163@qq.com

AbstractObjective:Toanalyzetheriskfctorsofneonatalhypoglycemiaandestablishaisk warning modelforneonatalhypoglyemia byusingthedecisiontreeCARTalgoritm.Metods:Theclinicaldataof235newborsandtheirmothersdeliveredinourhospitalfrom March202ltoNovember223wereretrospectivelyanalyzed.Theyweredividedintohypoglycemiagroupandnon-hypoglycemiagroup acording totheresultsofblood glucosetest.Thepredictionmodelforneonatalhypoglycemia wasconstructedbyLogisticregesion modelanddecisiotreCARodel.Te5foldosldationmthodwasuedforintealvalidationndtepredictieefyof themodelwascompared.Results:Amongthe235ewboms,36newbornsdevelopedhypoglycemia,199newborsdidnotdevelop hypoglycemia,and the incidence of hypoglycemia was 15.32% . Logistic regression analysis showed that gestational diabetes,mode of delivery,prematurefant,evelopent,rthightndeastfeingtieredepedetsactosfooatala ( P<0.05 ). The overall accuracy of the probability prediction model was 81.8% .After5-fold cross validation,the prediction accuracy was (20 72.5% .The decision tree modelshowed thatpremature infants werethe mostimportant influencing factorfor neonatal hypoglycemia, withaninformationgainofO.4O.TeAUCvalueoftheLgisticregressionmodelwasslightlyhighertanthatoftedecisotr.886 vs0.854),andthepredictioneficiencyofbothodelsasoderate.Conclusins:Gestationaldabetes,esareanectionatre infant,small for gestational age infant,low birth weight infant,and breastfeeding time |⩾2h were all influencing factors for neonatal hypoglycemia.Clinically,corresponding preventionand treatment plans could beformulated based ontheabove factors.

Keywordsneonate; hypoglycemia; influencing factors;decision tree;prediction efficacy; nursing

摘要目的:分析新生儿低血糖症的危险因素,并通过分类回归树算法(CART)建立新生儿低血糖症的风险预警模型。(剩余8395字)

目录
monitor
客服机器人