融合Transformer网络与卷积神经网络的稳态运动视觉诱发电位解码方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对卷积神经网络(CNN)在感受野有限、缺乏对全局信息的有效感知,以及在处理短时稳态运动视觉诱发电位(SSMVEP)信号时分类效果欠佳的问题,提出了一种紧凑EEGNet-Transformer(即EEGNetformer)网络。EEGNetformer网络融合了为脑电(EEG)信号识别任务而设计的通用的卷积神经网络EEGNet网络和Transformer网络的优势,有效地捕捉与处理脑电信号中的局部和全局信息,增强网络对SSMVEP特征的学习,进而实现良好的解码性能。(剩余17382字)

monitor