基于改进YOLOv5模型的织物疵点检测

打开文本图片集
摘 要:针对传统机器学习方法检测织物疵点精度低,小目标检测较困难的问题,提出一种基于改进YOLOv5的织物疵点的目标检测算法。在YOLOv5模型的Backbone模块中分别引入SE注意力机制和CBAM注意力机制,使模型聚焦于图像中的关键信息,改进传统 YOLOv5网络检测精度不高的问题。结果表明:改进后的模型具有更好的检测性能,其中引入CBAM模块后提升幅度最明显,较原网络mAP值提升了7.7%,基本满足织物疵点检测需求。(剩余13473字)