基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对短期光伏发电功率建立精准概率预测模型是提高电网安全稳定运行的重要手段。为了提高非晴空条件下光伏发电功率预测的精度和稳定性,选用具有优良正则化特性的贝叶斯神经网络模型作为基础算法。首先通过改进自适应噪声完备集合经验模态分解方法对多尺度多模态变化气象数据进行平稳化处理,简化映射关系建立步骤;其次引入长短期记忆神经网络来增强模型对光伏发电功率随机波动性和时序性的有效捕捉;进而结合各项算法提出基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测方法;最后以宁夏太阳山光伏电站实测数据为测试对象,对非晴空条件下的光伏发电功率进行预测,所提模型较之传统算法在非晴空条件下点预测和概率预测效果均显著改善,充分验证所提方法的有效性和可靠性。(剩余16344字)

monitor