基于改进YOLOv8模型的木材缺陷检测

打开文本图片集
关键词:木材检测;深度学习;损失函数;条件卷积;特征融合;YOLOv8;缺陷识别 中图分类号:TP391.41 文献标识码:A DOI:10.7525/j.issn.1006-8023.2025.04.010
Abstract:Tosolvetheproblemthatthetargetdetectionalgorithmisprone toleakageandlacksdetectionaccuracy ndetecting wood surface defects,this paper proposes an improved YOLOv8 model(YOLOv8-CBW,C,Band Ware abbreviations for CondSiLU,BiFPNand Wise-IoU)and constructs aself-made dataset containing various wood defects.Byoptimizing theoriginal YOLOv8 algorithmandcombining CondConv(conditional convolution)with SiLU(sigmoidweightedlinearunit)to formtheCondSiLUmodule insteadofthetraditionalconvolutionmodule,theflexibilityoffeature extraction is improved;the bidirectionalfeature pyramid network(BiFPN)is introduced toenhancethe multi-scale feature fusioncapability;andthe Wise-IoU(weighted intersection over union)loss functionreplaces the CIoU(complete intersectionoverunion)to improvetheadaptabilityand generalizationperformanceof the model tolow-qualitysamples. The experimental results show that the improved YOLOv8-CBW model improves the mAP5O(mean average precision at IoU threshold O.5O)and mAP50-95(mean average precision over IoU thresholds from 0.50 to 0.95)by 3.7% and (204号 3.9% ,respectively,compared with the YOLOv8 model,and it shows higher precision and stability in complex wood defectdetectiontasks.Theresearch in this paper provides new ideasfor wood defectdetection tasksand has good practical application prospects.
Keywords:Wood detection;deep learning;loss function;conditionalconvolution;feature fusion;YOLOv8;defect identification
0 引言
木材作为一种重要的可再生资源,具有重要的生态价值1和经济价值。(剩余14702字)