基于机器学习的磁性元件磁芯损耗预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:磁性元件在磁能传递、存储和滤波中起着关键作用,直接影响功率变换器的体积、质量、损耗及成本。因此,准确预测磁芯损耗至关重要。针对励磁波形对磁芯损耗的显著影响,提出了一种基于集成学习的励磁波形分类策略。首先,采用支持向量机(support vector machine,SVM)、随机森林(random forest,RF)和梯度提升决策树(gradientboosting decision tree,GBDT)作为基分类器,通过将分类结果与原始特征结合构建新的特征集,并使用元分类器进行训练以提升模型的泛化能力;然后,选择XGBoost作为磁芯损耗预测的核心模型;最后,通过遗传算法进行多目标优化,寻找到最小磁芯损耗与最大传输磁能的最佳工况。(剩余16239字)

monitor