基于卷积神经网络的包装盒缺陷检测理论分析研究

打开文本图片集
摘要:为了检测出包装盒表面缺陷部位,提高包装盒表面缺陷检测的准确率,采用深度学习中的卷积神经网络对包装盒表面缺陷进行检测。本文介绍卷积神经网络的基本理论,以及卷积神经网络常见的网络结构,并且对常见的神经网络进行归纳总结。
关键词:缺陷检测;深度学习;卷积神经网络;包装盒
中图分类号:TB48 文献标识码:A 文章编号:1400 (2022) 09-0032-04
Theoretical Analysis and Research on Surface Defect Detection of Packaging Box Based on Convolution Neural Network
WANG Fu-hao, CAI Ji-fei, SHI Mo-yan, YIN Tong, LUO Jian-qing(Beijing Institute of Graphic Communication, Beijing 102600, China)
Abstract: In order to detect the surface defects of the packaging box and improve the accuracy of the surface defect detection of the packaging box, the convolution neural network in deep learning is used to detect the surface defects of the packaging box. This paper introduces the basic theory of convolutional neural network and the common network structure of convolutional neural network, and summarizes the common neural networks.
Key words: defect detection; deep learning; convolutional neural network; packing box
缺陷检测是非常重要的环节,尤其在印刷、包装、纺织等领域有着非常广泛的应用。(剩余3188字)