基于改进YOLO v5的农田苗草检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对除草机器人等智能农业机械在复杂的农田环境下工作时易受到杂草种类、光照多变以及叶片遮挡等因素影响,难以高效精准地检测作物和杂草位置的问题,提出一种基于改进YOLO v5s算法的农田苗草目标检测方法,能够对不同天气、位置和密度环境下的农作物及其伴生杂草进行检测。首先使用公开数据集并通过数据增强方法扩充数据构建了新的苗草数据集,分析了苗草数据集的图像特点后针对原YOLO v5算法模型的不足提出改进,结合协同注意力CA与感受野块RFB模块改进主干网络,在只添加少量参数的情况下提高模型检测性能;然后选择CARAFE的上采样方式加强网络提取特征能力;最后采取WIoU v3替换CIoU损失函数,平衡锚框质量并实现高精度定位。(剩余10831字)

目录
monitor