基于改进型YOLOv5s的番茄实时识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对现有番茄检测精度低、没有品质检测和部署难度高等问题,提出基于YOLOv5s改进的番茄及品质实时检测方法,并与原始YOLOv5模型及其他经典模型进行对比研究。结果表明,针对番茄大小不同的问题,采用K-Means++算法重新计算先验锚框提高模型定位精度;在YOLOv5s主干网络末端添加GAM注意力模块,提升模型检测精度并改善鲁棒性;应用加权双向特征金字塔网络(BiFPN)修改原有结构,完成更深层次的加权特征融合;颈部添加转换器(transformer),增强网络对多尺度目标的检测能力。(剩余9181字)

目录
monitor