基于PSO-VMD-LSTM模型的城市轨道交通短期客流预测

打开文本图片集
摘要:为减少噪声对客流预测模型的干扰,采用粒子群优化(particle swarm optimization,PSO)算法确定变分模态分解(variational mode decomposition,VMD)的参数,通过PSO算法优化的VMD对原始客流序列进行降噪处理,将客流数据分解为不同时间尺度下的本征模态函数(intrinsic mode function,IMF)和余量;采用贝叶斯优化(Bayesian optimization,BO)算法确定长短期记忆(long short term memory,LSTM)神经网络的超参数,构建PSO-VMD-LSTM客流预测模型。(剩余13566字)