基于粗细网络模型分步训练的地震数据重建方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:由于地形等复杂条件的限制,叠前地震数据在空间上存在不完整或不规则分布的情况,导致数据出现缺失或混淆等现象。近年来,基于卷积神经网络的方法已经广泛应用于缺失地震数据重建工作。然而一步训练过程的网络模型不足以重建具有宽振幅范围的缺失地震数据,低振幅缺失部分的重建结果仍需改进。因此本文提出一种具有分步训练过程的粗细网络模型。(剩余15067字)

monitor