樽海鞘算法优化支持向量机的RC柱抗侧移承载力预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:现有钢筋混凝土(RC)柱抗侧移承载力预测模型缺乏泛化性能,延性柱抗弯承载力的预测模型不能用于非延性柱的抗剪承载力,反之亦然。机器学习(ML)方法能够解决这一问题,但由于无法自动剔除冗余和不相关特征,使得ML模型复杂度高且容易过拟合。为此,提出一种樽海鞘算法优化支持向量机(SSALS-SVM)方法,基于给定的数据集,SSALS-SVM能利用樽海鞘优化算法(SSA)自动剔除冗余和不相关的特征,筛选最具代表性且各特征之间相关性弱的特征子集形成最优特征组合,同时对控制模型非线性拟合能力的超参数进行优化。(剩余17067字)

monitor