基于SHAP的可解释机器学习的滑坡易发性评价模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

[摘要] 机器学习在构建滑坡易发性评价模型中因其训练复杂且预测结果难以解释而发展受限。通过SHAP(SHapley Additive exPlanations)结合机器学习模型揭示各影响因子对滑坡发育的影响,增强模型可信度与可解释性。以三峡库区忠县为研究区,通过随机森林、XGBoost

(eXtreme Gradient Boosting)以及深度随机森林机器学习算法结合贝叶斯优化算法分别构建滑坡易发性评价模型;利用混淆矩阵及受试者工作特征曲线开展评价精度验证;基于4种分级方法得到滑坡易发性区划图;通过SHAP分析影响滑坡发育的主导因子。(剩余32456字)

试读结束

monitor